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The method developed by Bauer, Garabedian, and Korn (“Supercritical wing Sections,” 
Springer-Verlag, Berlin, 1975) for the design of wing sections that exhibit shock-free flow 
at high subsonic speeds has been applied to the problem of cascade design. A cascade 
is a periodic distribution of two-dimensional blade cross sections that serves as a basis 
for the design of axial flow compressors and turbines. Those aspects of the design procedure 
that are used for both airfoil and cascade design are reviewed briefly in this paper. Em- 
phasis has been placed on the differences between airfoil and cascade design. In particular, 
the form of the singular solution in the hodograph plane is different in the two cases. 

1. INTRODUCTION 

In recent years, there has been a growing concern about the availability and 
utilization of our energy resources. Considerable effort has gone into the development 
of new resources and into methods of more efficient use of existing energy supplies. 
The procedure described here can be used to design more efficient high speed turbo- 
machinery which could result in significant fuel conservation. In particular, this 
technology could be the basis for the design of improved axial flow compressors used 
for the production of enriched uranium at gaseus diffusion plants. It can also be 
applied to the design of lighter weight and more efficient airplane engines. 

In this paper, the technique developed by Bauer et al. [2] for isolated airfoil design 
is applied to the problem of designing transonic turbine and compressor blades 
found in axial flow compressors. The method is applicable to two-dimensional 
problems. Therefore, the model for design will be a periodic distribution of two- 
dimensional blade cross sections called a cascade. As the distance between blades 
increases, the solution must approach that of the isolated airfoil; thus this paper can be 
viewed as a generalization of the airfoil design method. 

As with the airfoil, the problem reduces to Iinding smooth, transonic steady state 
solutions to the equations of irrotational motion of an inviscid compressible fluid 
about some object. In this case, the object will be a periodic distribution of blades. 
Since the equations of motion are the same as those for the airfoil design problem, 
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the same technique of conjugate characteristic coordinates extended into the 
complex domain can be employed. A more detailed description of this method 
is found in [2]. 

The main differences between designing a compressor blade and an airfoil are the 
locations and types of singularities of the solution in the hodograph plane. In the 
airfoil case, the basic singularity is a pole in the hodograph plane at some prescribed 
free stream velocity. For the cascade problem the velocity far upstream of the cascade, 
called the inlet velocity, is different from the velocity far downstream of the cascade, 
called the exit velocity. In fact, the function of the cascade is to change the inlet 
velocity in some prescribed way. Thus, in the hodograph plane there are two velocities 
that correspond to infinity in the physical plane. The appropriate singularities in this 
case are logarithms at the inlet and exit velocities. As the distance between these 
logs decreases, the spacing between blades increases, approaching the isolated airfoil 
case. The logarithmic singularities behave like a dipole; in the limit they approach the 
correct singularity for flow around an airfoil. 

For the cascade design problem as with the airfoil design problem, the inverse 
problem is solved; that is, solutions to the equations of motion with the appropriate 
singularity are generated and the streamline passing though the stagnation point is 
examined. This streamline describes the shape of the body. To generate solutions to 
the flow equations a set of parameters is chosen which defines physical quantities and 
describes an initial analytic function. The shape of the streamline in the hodograph 
plane corresponding to the blade is also prescribed. The program finds a solution to 
the equations of motion whose stagnation streamline matches the prescribed one in a 
least squares sense. If this streamline representing the body is not closed, or if it is not 
physically realizable in the physical plane (e.g., negative thickness), the input param- 
eters must be changed and the program rerun. 

In Section 2, the equations of motion are presented and rewritten in characteristic 
coordinates that are extended into the complex domain. A method to generate solu- 
tions with the appropriate singularity for a cascade is formulated in Section 3. 
Section 4 discusses the problem of choosing the initial function. Section 5 presents a 
description of the numerical technique that has been programmed on a CDC 6600 
computer. The significant modifications of the design procedure of [l] are discussed 
in Section 6 and some results are given. 

The procedure presented in this paper enables the design of supercritical blades. 
This offers many advantages over conventionai blades. Cascades can be designed 
for which each blade is highly loaded, thereby reducing the number of blades necessary 
to achieve a desired amount of compression and turning. In addition to saving con- 
struction costs, lower loss coefficients can be expected since there are fewer blades. 
For airplane engines the weight savings mean an additional fuel savings. Alternately, 
compressor blades can be designed with higher inlet Mach numbers and more 
compression before the onset of drag rise than conventional blades. This should 
make it possible to reduce the number of stages, again reducing costs and 
saving fuel. 
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2. EQUATIONS OF MOTION 

Let x and y be Cartesian coordinates and let u and v be the corresponding velocity 
components. Then the steady state equation of motion for an inviscid polytropic 
gas with isentropic, irrotational flow is 

(c’ - u2)&35 - 2Uz&/ + (c” - z+jru = 0, (2.1) 

where r# is the velocity potential, & = U, 4, = U, and c is the local speed of sound. 
Let p denote pressure and p density. Then c is defined by 

c2 _= d’ldp = Y@/P), (2.2) 

where y is the gas constant. Conservation of energy is expressed by Bernoulli’s 
equation 

c2 = co2 - [(y - 1)/2]q”; q2 = 28 + 29, (2.3) 

where c,, is the sound speed at stagnation velocity. Equation (2.3) shows that c, hence 
p and p, are functions only of the speed q. 

Introducing characteristic coordinates t and 7, Eq (2.1) can be written as a system 
of four linear equations for U, v, x, and y (cf. [2]). Computing the characteristic 
directions 

d”=j) = uv & c(q2 - cy2 
du ’ c2 - v2 

we can write the equations of motion in characteristic form as follows: 

v, = hp, ; 

A- ye + x, = 0; 

(2Sa) 

(2Sb) 

The local Mach number M is defined as q/c. The equations of motion are hyper- 
bolic when A+ are real and unequal, which occurs when the flow is supersonic, M > 1. 
For M < 1, the flow is subsonic and the complex conjugate roots in A* mean that 
the equations of motion are elliptic. The set of points where M = I is called the 
sonic line and is a circle in the hodograph plane 4 = constant. This constant is called 
the critical speed, denoted by q* . 

Since we are interested in solutions to these equations in a region of the hodograph 
plane where both subsonic and supersonic flow may occur, a method applicable to 
both regions is necessary. The method of complex extension [4] is ideally suited 
since, in the complex domain, there is no distinction of type; in fact, AA need not 
be real or complex conjugate. The only theoretical difficulty that arises in applying 
complex extension is along the set of points where A, = A-, i.e., M = 1, since 
Eqs. (2.5b) are coincident there. This problem is easily treated (cf. [2. lo]). 
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With the method of complex extension, the independent variables .$ and 71 are 
each extended into the complex domain so the solution u, v, x, and y must be allowed 
to take on complex values. Since both 6 and q have real and imaginary components, 
this amounts to enlarging the independent domain from two dimensions to four 
dimensions. 

The solution should be computed in as small a subset of the extended space as is 
necessary to obtain the solution in the real hodograph plane. It is possible to choose 
characteristic coordinates 5 and 77 so that the set of points 5 = ;i includes the real 
subsonic hodograph plane. These characteristic coordinates are called conjugate 
characteristic coordinates and are described in [2]. 

Equations (2Sa) are independent of x and y; therefore, z&v) and a(& 17) depend 
only on the selection of characteristic coordinates, not on the solution to Eqs. (2.5b). 
f and 7 may be viewed as generalized hodograph variables. In fact, closed form 
expressions for conjugate characteristic coordinates in terms of the hodograph 
variables u and v can be derived by integrating (2.4) (cf. [13]). It follows that s and s* 
are conjugate characteristic coordinates by choosing 

s = h(q)e-i”; s* = h(q)eie, (2.6) 

where 

h(q) = Kq{[c - (c” - q~)l”]‘y(c2 - qfy2 + cl}-” (2.7) 

and $ = (y - l)/(r + l), 19 = tan-%/u and K is a constant determined so that 
h(1) = 1. As the critical speed q* becomes infinite h(q) approaches q. Thus, for 
incompressible flow s approaches w = u - iv and s may therefore be viewed as an 
analog of the complex velocity for compressible flow. The function h is real when q is 
real and subsonic, so that s and s* are complex conjugates in the subsonic region. 
Let .$ and 77 be complex characteristic coordinates and consider mappings of the form 

s=F(& - s* = F(ij) cm 

where Fis an arbitrary analytic function. For any function F, .$ and 7 are characteristic 
coordinates. Also, it follows from (2.8) that whenever s = S* then 5 = Gj so that t 
and 7 are also conjugate coordinates for any analytic function F. 

In previous work on airfoil design it was sufficient to select a two parameter 
family of transformations 

s = F(t) = 1 - 2B.$ - 5” (2.9) 

for the complex parameter B that was suggested by considering incompressible 
flow around an elliptic cylinder. This led to a class of solutions that had a single 
branch point in the hodograph plane at 6 = -4. Moreover, design in the t-plane is 
simpler than in the W-plane because a simple closed curve representing the body 
streamline is transformed into the two-sheeted hodograph. Turbine and compressor 
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blades generally have a high degree of camber and may require more than one branch 
point. Therefore, it is convenient to let 

h=l 

(2.10) 

which can have as many as I - 1 branch points. Locating the branch points can 
be done by examining their location for incompressible flow around a cambered 
Joukowski profile. 

Work is presently underway to develop an effective method for the selection of the 
function F to achieve the desired design objectives [6]. The selection of a suitable 
transformation F for turbine design will be the subject of a future report [1 11. 

3. SINGULAR SOLUTION FOR THE CASCADE PROBLEM 

The method of complex extension can be applied to Eqs. (2.5) to generate analytic 
solutions of the characteristic initial value problem in the extended hodograph plane. 
Let 5 = tC and 7 = 7c be two characteristic initial planes and assign data for either 
x or y along each of them. The pair of ordinary differential equations along each 
characteristic given by (2.5b) can be integrated to get the other dependent variable.The 
solution at points not on either characteristic initial plane can be found by the 
numerical technique described in Section 5. The solution will be analytic provided 
the initial data are analytic. 

Flow through a cascade requires a solution that has an inlet velocity at -co and 
an exit velocity at + co in the physical plane. Let w, = U, - ive and wA = U, - iuA 
denote the complex upstream and downstream velocities, respectively. Let (& , rlB) 
and (&, , 7A) be the corresponding values of the characteristic coordinates found by 
solving (2.6) and (2.8) once the transformation function F has been prescribed. Since 
5 and 7 are conjugate coordinates and uA , uB , vA , and ZIP are real quantities, it follows 
that 7A = <, and 7B = & , The solution in the physical plane is required to have 
infinities at the two points (&, , &,A) and (.& , &), which implies that there is a source 
at & and a sink at tA in the real hodograph plane. The solution must also be periodic 
in the physical plane. Any closed loop in the hodograph plane surrounding both 
.$A and &, corresponds to a closed loop in the physical plane enclosing a blade. This 
enclosure requirement will be modified for the wake model of the trailing edge. 

One can verify that a solution of the form 

x = WX1 log(f - &) + X2 log(t - 6%) + X3], (3.la) 

Y = WY1 log(f - L) + Y2 lo&! - -5) + Y31 (3.lb) 

satisfies the above requirements for suitable choices of the regular functions X, X2, 
X3, P, Y2, and Y3. The assumption that X3 and Ys are regular leads to the requirement 
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that X1, Y1 and X2, Y2 be solutions to the partial differential equations (2Sb) with 
initial conditions 

h-Yl+Xl=o, (3.2a) 

A-Y2 + x2 = 0 (3.2b) 

on 5 = tA and 6 = tB , respectively. This can be verified by substituting Eqs. (3.la, b) 
into (2.5b). From this construction it can be seen that X1, Y1 and X2, Y2 are essentially 
Riemann functions for Eqs. (2.5b). 

Equations (2.5b) can be solved with initial conditions (3.2a, 3.2b) to obtain X 
along 6 = tA and X2 along [ = & . x1 and X2, along the corresponding characteristics 
of the other family q = Q , 7 = Q , must be defined to obtain a well-posed charac- 
teristic initial problem for the determination of X, X2, Yl, and Y2 everywhere. 
Computation will be saved by defining the data on the other family of characteristics 
by reflection, i.e., XQ, vA) = X1(5, , 5); X2(t, r)B) = X2(tB , 5). Reflection is not 
generally possible since x1, X2, Yl, Y2 need not be real at fA , qa and & , ye . However, 
since Eqs. (2.5b) admit constant solutions, solutions can be found for x1, X2, Yl, and 
Y2 of the form 

Xl =2’1+ ix, ; X2 = g2 + ix, , (3.3a) 

Yl= P+iY,; Y2 = P2 + iY, , (3.3b) 

where X,,, , X, , Y, , and Y, are real constants and *, x2, pl, and p2 are symmetric 
solutions (i.e., .&t, 7) =x1(?, 0, etc.) to Eqs. (2Sb) satisfying (3.2a),-(3.2b) along 
the initial characteristics. 

The equations for X3 and Y3 obtained by inserting (3.la), (3.2b) into (2.5b) are 

,_y3+,3=(~-~1+~1)+i(h-y,+x,) 
E E L4 - 5: 

+ (A-P + 22) + i(A-YE + X,) 
5iT-t ' 

(3.4a) 

X+Yv3 + xv3 = 0, (3.4b) 

where the regularity of the right-hand side of (3.4a) is assured by the initial conditions 
(3.2a), (3.2b). In order to formulate a well-posed problem for the evaluation of X3 
and Y3 it is necessary to assign initial data along a pair of initial characteristics. Let 
5 = & and r] = qc be initial characteristics whose intersection is a point in the real 
subsonic domain. This implies that Q = [, , We assign 

X3& , rl) = G(rl); X3(& rlc) = Ghc) (3.5) 

on the initial characteristics E = & and 77 = q7c , respectively, where G is an analytic 
function. The selection of G is the subject of Section 4. Since the solution for x and y 
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uses only the real parts of X3 and Y3 many combinations of initial data can be pre- 
cribed that will yield the same real parts. In particular, the symmetric set 

X3(tc 9 4 = QM4 + G(dl; X3(5, ?IC) = 4 KGc) + %I (3.6) 

has been used to reduce computation in the subsonic portion of the flow. 
The four real constants X, , YA , X, , and YB must be determined. First, consider 

the requirement that the solution be single valued for any real closed path encircling 
a blade; 

if 
dx = Re [f( 

A? + ix, + 3 + ix, 
5 - 4% 5 - &I 1 1 de = -24X, + X,>, (3.7a) 

$ dy = Re [f ( “; T 2 + “; t i: ) dc] = -24Y, + YB), (3.7b) 

where the path of integration is around both &, and & in the plane f = 77. Therefore, 
to have a single-valued solution, X, = -X, and Y, = - Y, . A further requirement 
is that the stream function ~,4 defined by 

be single valued for any similar path. Since pa and pn are real in the real domain it 
follows that 

f dlCI = ~~-[PAK~YA + PBM’B - pAu,xA - P~~BX~I = 0. 

Making use of the closure conditions (3.7a),-(3.7b) and (3.9) we have 

(3.9) 

AUA - pB”dyA = (PAVA - pBvldXA . (3.10) 

From (3.la), (3.lb) it is noted that the solution is periodic with a period of X, and 
Y, in x and y, respectively. The stagger angle p and the gap g are defined by 

fl = tanyl(YA/xA); g2 = it!,’ + YA2. (3.11) 

Given the inlet and exit velocities, the stagger angle is computed from (3.10). Vertical 
stacking can be achieved by a plane rotation that transforms /3 into 42. To have 
physical significance the gap must be measured relative to some suitable distance 
measurement such as the blade chord. Since this is not known until the solution has 
been found, the solution can be normalized by requiring that the gap g have magni- 
tude 1 tA - & 1-l. As a result of this normalization, the chord length will change 
slowly as CA -+ & . Moreover, in the limiting case, the isolated blade will have the 
same singularity as the one used in our previous work on airfoil design. 
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The wake model of the trailing edge that was formulated in [l] to correct for 
boundary layer displacement can easily be incorporated into this cascade design 
procedure. This is done by requiring that the residues of (3.7a), (3.7b) be nonzero. In 
fact, they should be proportional to X, and Y, , respectively, so that the blades will 
have a vertical gap when stacked vertically. The constant of proportionality is the 
ratio of the thickness of the trailing edge outside the boundary layer to the gap and is 
chosen to be small. Eqaution (3.10) has to be modified accordingly. 

The problem is flow through a cascade of blades can, therefore, be solved by 
generating the solution of two characteristic initial value problems for the homo- 
geneous equations (2.5b), one along 6 = [,,, , 7 = $, , the other along 5 = cB, 
7 = I, , and by solving a characteristic initial value problem for the inhomogeneous 
equations (3.4a), (3.4b) for arbitrary data chosen along some initial characteristics 
5 = tC , 7 = vC . The initial data for the homogeneous equations are determined 
by solving ordinary differential equations along the initial characteristics reminiscent 
of the Riemann functions. The four constants X, , X, , YA , and Y, are completely 
determined by three closure conditions and normalization. The solution for x and y is 
formed from the solution of these three problems using (3.la), (3.1 b) and has the 
singularities necessary for flow through a cascade. 

4. THE SELECTION OF INITIAL DATA 

Solutions to the equations of motion of the form (3.la),-(3.lb) will have the 
appropriate singular solution for flow through a cascade. However, arbitrary initial 
data assigned along the characteristic initial planes, 5 = tC and 17 = qC, will not 
necessarily generate solutions with a physical interpretation. Once the transformation 
from the hodograph variables to characteristic coordinates is known, the design 
problem is mainly that of selecting the initial data to achieve as many design goals as 
possible. Many design objectives, such as boundary layer control, cannot be stated in 
precise terms within the context of this inviscid model. Other objectives may be 
impossible to achieve within the class of shockless solutions. Thus, the problem of 
choosing initial data requires experimentation. 

The shape of the blade is found by examining the level curve 4 -= & of a solution 
where $J,, is the value of the stream function at stagnation. The shape of this curve 
will depend upon the initial data and, in fact, does not have to be a closed curve. 
A procedure for selecting the initial data that attempts to minimize the chances of 
obtaining extraneous solutions is outlined. Most of the ideas used for the airfoil 
design problem described in [I, 21 are applicable. Let the initial function be of the 
form 

where Aj are constants and gj are simple functions. 
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The linear parameters Aj of Eq. (4.1) are found by a least squares process. lnstead 
of prescribing the linear parameters, a curve or set of arcs in the hodograph plane is 
selected on which the blade is to lie. The linear constants in (4.1) are determined so 
that the solution it generates minimizes 

where the integration is taken along the prescribed arcs. The weighting function W 
can be adjusted to achieve a better fit along any given arc. 

Prescribing the automation arcs in the characteristic planes is in effect prescribing 
the body streamline in the hodograph plane which is convenient for boundary layer 
control. Boundary layer separation can be eliminated, or delayed until the last percent- 
age of chord in most cases, by prescribing an arc that approaches the trailing edge 
along a line of constant speed. 

Additional constraints are placed on the solution. The body streamline is required 
to pass through a designated point in the hodograph plane corresponding to the 
trailing edge, and the derivatives #lc , tit, are required to vanish there. This is our model 
of the Kutta-Joukowski condition in the hodograph plane. 

The above constraints and the least-squares conditions greatly reduce the effort 
in selecting meaningful initial data. The problem as stated is overdetermined and, 
therefore, good agreement cannot be expected between the prescribed arcs and the 
resulting streamline unless they are selected in a manner consistent with the given 
compression and turning. 

5. NUMERICAL METHOD OF SOLUTION 

The finite difference technique described in [2] for airfoil design has been applied 
with minor modifications for the cascade design problem. In the real domain this 
technique is called the method of characteristics or Massau’s method [3] and is 
essentially a predictor-corrector scheme. The method is applied in the complex 
domain merely by performing all operations using complex arithmetic. 

The solutions for X1, Yl, X2, Y2, and X3, Y3 must be found. The functions X1, Y1 
and X2, Y2 satisfy the equations of motion (2.5b) with data given by (3.2a), (3.2b) on 
the initial characteristics, while X3, Y3 satisfy the inhomogeneous equations (3.4a), 
(3.4b) whose right-hand side is computed from X, Y1 and X2, Y2. The method of 
Massau will be applied to each of these three sets of unknowns. The hodograph 
variables may be obtained explicitly from Eqs. (2.8) (2.6), and (2.7). However, 
Massau’s method with characteristic initial data obtained from Eqs. (2.6)-(2.8) is 
faster. 

The initial value problems for X1, Y1 and X2, Y2 start on initial characteristics e,,, , 
TA and 5s > 17IJ 3 respectively. The initial value problem for X3, Y3 has initial charac- 
teristics to, qC along which it is necessary to know X1, Yl, X2, and Y2 in order to 
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evaluate the inhomogeneous terms. The application of this method requires the 
selection of a path along each of the initial characteristics, as illustrated in Fig. 1A. 
Each path starts at the point of intersection of the two initial characteristics. Let r and t 
be real parameters. We assign data along a path 7 = q(t) from r], on the initial 
characteristic .$ = 5, and along another path f = f(r) from & on the other initial 
characteristic. Given the initial data along these paths, application of the finite differ- 
ence scheme determines the solution of the two-dimensional surface consisting of the 
points of intersection E(r), v(t). To find the solution at point tP , rlP , two initial 
paths are chosen; one on 5 = tA from 7 = va to q = qP and the other on 7 = 7.-r 
from [ = tA to [ = [, . For analytic initial data the solution at the point lP , vP is 
independent of path. The values of X1, Yl, X2, Y2 for the evaluation of the right-hand 
side of (3.4a) can be computed as they are needed by selecting each initial path on 
r),, so that it starts from 5 = 5, , passes through ,$ = & , and then through 6 = tc. 
Similarly, the initial path along 5 = tA begins at 71 = yA and passes through ve and 
r], . A typical pair of paths is shown in Fig. 1A. The corresponding finite difference 
grid is illustrated in Fig. 1B. 

The solution throughout the four-dimensional domain can be computed by selecting 
appropriate pairs of paths. The solution in the real hodograph plane should be 
computed with as few pairs as possible. Complex conjugate sets of paths yield one 
line of the solution in the real subsonic domain. One set of paths determines a portion 
of the solution in the supersonic region bounded by two characteristics and the sonic 
line. Generally, this region contains the full supersonic portion of the flow outside 
the blade. 

Each set of initial paths is described by the vertices of a polygonal arc and a set of 
grid points superimposed in such a way that each vertex is a grid point and that the 
maximum distance between adjacent grid points is less than some fixed amount. Let 
ujk denote the value of u(.$(rJ, r(t,)), w h ere r and t are real parametric representations 
of the initial paths. Note that r = 0 and t = 0 are the initial curves on 5 = tA and 
71 = qa , respectively. The predictor step of the method of characteristics for the 
solution of Eq. (2.5a) at the point j, k yields the two simultaneous linear uquations 

visk - vj-l,k = tA+)j-l,k Ccj,k - %l,k), (5.1 a) 

vj,k - Vj,k-1 = (A-)j,k-1 (lj,k - Uj,l;-1) (5.lb) 

for the predicted values zzj,k and gj,k which are first-order-accurate estimates of u and v. 
The initial values of u and v alongj = 0 and k = 0 are determined explicitly from the 
hodograph transformation (2.6~(2.8). 

The values resulting from the predictor step are used to compute first-order- 
accurate midpoint values for h* given by 

i;+ = *[(h+)j-l,k + h+(zij,k 7 ai,k>l, (5.2a) 

(5.2b) 
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For the corrector step 

%‘,k - %l,k = x,(%,k - %,k), (5.3a) 

ui,k - vi,&1 = A-(uj,k - %‘,k-1) 

are solved for uj,k and vj,k to obtain second-order accuracy. 
A similar set of equations is solved to obtain X1, Y1, X2, Y2, and X3, Y3 to second 

order accuracy. Equations (3.la)-(3.lb) are evaluated at points in the real hodograph 
to obtain second-order-accurate values of x and y. The stream function is obtained 
by applying a second-order-accurate difference approximation to (3.8). Points on the 
blade are computed from the stream function by inverse parabolic interpolation. 

The least squares automation outlined in Section 4 is accomplished by generating 
solutions to Eqs. (3.4a), (3.4b) along the prescribed automation arcs with varying 
initial data. For each linear parameter A? of function G, given by (4.1), initial data 
are assigned which have that particular parameter set to one and all the others set to 
zero. This set of solutions determines the coefficients of a linear system of equations 
for Aj as described in 121. The desired initial function G is given by the solution to this 
system of equations. 

The systems of two simultaneous linear equations (Lla), (5.lb) and (5.3a), (5.3b) 
become ill-conditioned whenever h, and h- are nearly equal, i.e., near points of the 
complex sonic line; therefore, our largest errors occur in the vicinity of the sonic line. 

A third-order accurate method can be obtained by Richardson’s extrapolation. 
This option has been incorporated into the computer program to obtain more accurate 
resolution in the vicinity of the leading and trailing edges. We cannot expect improve- 
ment near the sonic line because of the singularity of the hodograph transformation 
there. 

6. REFINEMENTS TO THE DESIGN PROCEDURE AND RESULTS 

A number of improvements have been made in the cascade design program that 
have not yet been incorporated in the airfoil design procedure (cf. [2]). The most 
significant modification was made to reduce execution time. Blades with low gap/chord 
require more computation time since the length of the path connecting the inlet and 
exit velocities in the characteristic plane increases inversely with the gap to chord 
ratio, The least squares calculation takes most of the computing time since a solution 
for X3 and Y3 along each automated path must be computed for each parameter Aj . 

A significant reduction in execution time can be achieved by computing X3 and Y3 
for each parameter Aj at the same time, because the righ-hand side of (3.4a) and h* 
would only be computed once. For fine grids with many linear parameters, the 
required storage would make this procedure prohibitive. A compromise which allows 
for a fixed number of solutions of X3 and Y3 to be computed at each pass has been 
incorporated. A typical run with 10 of the Ai parameters obtained at each pass has 
decreased execution time for the automation by a factor of about 5 with less than 

58112911-3 
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twice the storage required. Additional coding improvements which make the program 
easier to operate will not be discussed. 

A computer program for cascade design has been written that incorporates these 
ideas, and a few designs have been generated. A successful design required several 
runs, but the time for each run is small so that computing time is not prohibitive. It 
takes about + min of central processor time on the CDC 6600 for a coarse mesh run. 
An intermediate grid and a fine grid take about 2 and 8 min, respectively. The third- 
order-accurate option increases computing time by a factor of about 5. 

Figure 2 is a Calcomp plot of a blade which has been designed with this program 
in about 50 runs. All but the last few runs were made on a coarse grid. The inlet 
flow angle, when stacked vertically, is 45” and the turning angle is 29”. The gap chord 
ratio is 1.07. The Mach number distribution over the blade and the characteristics or 
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FIGURE 3 

Mach lines in the supersonic region have been plotted. With this Mach number 
distribution no separation is predicted for Reynolds number 1.6 million. 

The corresponding initial plane is illustrated in Fig. 3. The input paths and sonic 
locus have been plotted. The plus signs represent the preimages of points on the body, 
and the arrows illustrate the location of logarithmic singularities in the initial function 
and the direction of their cuts. An asterisk is placed at the points corresponding to 
the inlet and exit velocities. This figure is similar to those obtained previously with 
the airfoil design program (cf. [I, 21). 

A number of experiments performed on airfoils designed by this procedure (cf. 
[S, 7, 8, 9, 121) have proven the usefulness of this method. In particular, Ref. [12] 
shows agreement with this theory even for Reynolds numbers less than 106. A blade 
designed by this technique has been tested in a cascade wind tunnel at the Pratt and 
Whitney Division of United Technologies. 

Work to simplify the design procedure is in progress. A more detailed report on 
cascade design with emphasis on turbine design should appear shortly [ll]. 
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